Эффект Доплера, его исследование и значение для науки

Зависимость частоты волнового импульса от скорости при движении источника волн относительно наблюдателя называют эффектом Доплера. Эффект Доплера имеет место для всех типов волн — звуковых в атмосфере, упругих в твердом теле, волн на воде, световых волн.

Австрийский физик и астроном К.Доплер обнаружил эту зависимость в 1842 г. Многие слышали, как меняется звук свистка проносящегося мимо платформы поезда. Первое подтверждение эффекта было получено для акустических волн в опытах голландского физика с группой музыкантов на железной дороге (1845). Часть группы разместилась на платформе, двигавшейся с известной скоростью вдоль перрона, где находились остальные, воспринимая их музыку. Затем музыканты поменялись ролями. Данные, полученные от непосредственных впечатлений участников опыта, хорошо укладывались в формулу Доплера.

Но эффект Доплера можно не только «слышать», но и «видеть», хотя бы в ванне или пруду (рис. 3.6). Периодически погружая палец в воду,

Изображение

чтобы на поверхности образовались волны, равномерно перемещайте его в одном направлении. Следуя друг за другом, гребни волн в направлении движения пальца будут сгущаться, т. е. длина волны станет меньше обычной, в направлении назад — больше.

Изображение
Изображение

Период волны, излучаемой неподвижным источником, равен где — длина волны, излучаемой покоящимся источником, v — скорость волны в среде. Пусть источник движется со скоростью и в сторону

наблюдателя. Тогда длина волны, воспринимаемая неподвижным наблюдателем, равна

Изображение
Изображение
Изображение
Изображение

Поскольку системы отсчета, связанные с источником и наблюдателем, инерциальны, где — частота волны в системе отсчета наблюдателя, – частота волны в системе отсчета источника. Отсюда

Изображение

Здесь знак «-» соответствует движению источника от наблюдателя, а знак «+» — движению источника к наблюдателю.

Таким образом, частота волны, регистрируемая наблюдателем, отличается от частоты волны, излучаемой источником, на величину, равную доплеровскому сдвигу частоты:

Изображение

Пусть теперь источник движется со скоростью w. Тогда относительная длина волны, воспринимаемая наблюдателем, равна

Изображение

где u-w — относительная скорость движения источника и наблюдателя. Отсюда частота волны, воспринимаемая наблюдателем, равна

Изображение

Для доплеровского сдвига частоты получаем

Изображение

Следовательно, доплеровский сдвиг частоты равен частоте волны в системе отсчета источника, умноженной на коэффициент, равный относительной скорости источника и наблюдателя, деленной на скорость распространения волны в среде.

Измерение доплеровского смещения в спектрах позволяет с большой точностью и, не возмущая измерением движение и систему, определить скорости движущихся объектов. Французский физик А.Физо предложил (1848) использовать эффект Доплера для измерения радиальной составляющей скорости звезд по сме-

щению спектральных линий (эффект Доплера—Физо). Он заметил, что в линейчатых спектрах можно измерять смещение. В 1867 г. английский астроном У. Хеггинс измерил доплеровское смещение водородной линии в спектре Сириуса и сравнил его с той же линией в спектре, полученном в лаборатории. Он заключил, что скорость звезды относительно Земли равна 66,6 км/с, а относительно Солнца — 47,3 км/с. Но для доказательства применимости эффекта Доплера к свету нужно было найти объект, скорость которого можно было бы измерить и другим способом. В 1871 г. немецкий астроном Г. Фогель измерил доплеровские смещения для двух точек солнечного экватора, находящихся на краях диска, и определил их линейную скорость — 2 км/с, что совпадало с результатом, полученным по движению пятен. Затем определили скорости вращения планет, колец Сатурна, звезд вокруг своей оси, ядер и хвостов комет.

Академик А. А. Белопольский считал, что нужно провести проверку в земных условиях, поскольку неизвестны условия излучения в Космосе. С этой целью в 1894 г. он разработал установку, состоявшую из двух колес, к каждому из них в виде лопастей прикреплялись 8 плоских зеркал. Зеркала обоих колес были строго параллельны и вращались с постоянной скоростью. Съемки проводились при неподвижных зеркалах и при вращающихся с частотой 32 — 44 об/с (это соответствовало перемещению изображения со скоростью 240 — 330 м/с). Обработка результатов дала хорошее совпадение по числу оборотов колес и доплеровскому смещению. Вращение производилось в обе стороны поочередно. Опыт длился всего 1 ч, но он бьш наиболее убедительным в применении эффекта Доплера к свету.

Эффект Доплера как основной в оптике движущихся сред сыграл решающую роль в обосновании СТО. Физо поставил (1851) классический эксперимент по определению увлечения эфира движущейся Землей. Он заставил интерферировать два луча света, проходящих столб воды: один в направлении течения, а другой — против него. Если эфир увлекается, то полосы должны смещаться по отношению к положению, соответствующему неподвижной воде. К тому же результату пришли Э. Кеттлер (1871) и Май-кельсон и Морли (1886) — эфир движется вместе с Землей. Ранее Майкельсон пытался обнаружить «эфирный ветер» при движении Земли в эфире, посылая световые лучи по взаимно перпендикулярным путям и заставляя их интерферировать. Хотя линейная скорость Земли (29,7 км/с) много меньше скорости света и установка позволяла засечь и в 100 раз меньший эффект, опыт дал отрицательный результат. Опыты, показывавшие увлечение эфира, противоречили объяснению явления аберрации (от лат. aberratio — отклонение), требовавшей неподвижности эфира. Это противоречие было разрешено отказом от эфира и созданием СТО.

Когда картина мира стала меняться на квантовую, возникла необходимость в ином объяснении эффекта Доплера. Как отмечал известный немецкий физик А. Зоммерфельд, казалось почти невозможным трактовать эффект Доплера как обусловленный взаимным сближением или удалением волновых поверхностей. В 1922 г. один из создателей квантовой механики австрийский физик-теоретик Э. Шредингер дал такое обобщение формулы Доплера для частоты на случай больших скоростей.

Метод для измерений скоростей звезд и галактик, основанный на эффекте Доплера, получил в астрономии наиболее впечатляющее применение.

Спектры галактик слабы, измерения достаточно трудны. Американский астроном В.Слайфер с помощью мощного спектрографа, соединенного с телескопом, измерил доплеровский сдвиг в спектре туманности Андромеды (1912), затем — еще в тринадцати спиральных галактиках. Скорости большинства из них были направлены в противоположную сторону от Земли и составляли до 1800 км/с. К 1925 г. Слайфер измерил лучевые скорости еще 45 спиральных галактик, и все они, кроме нескольких ближайших, удалялись, а скорость удаления почему-то возрастала по мере уменьшения их яркости, будто они разбегались от Млечного Пути во всех направлениях с возрастающей скоростью. Чтобы согласовать это с однородным распределением галактик в пространстве, пришлось считать, что это — однородное расширение. Но тогда их лучевая скорость (проекция скорости на луч зрения) должна быть пропорциональна расстоянию до них. Так, если галактика выглядит в 100 раз слабее, значит, она в 10 раз дальше. Галактики из списка Слайфера имели лучевую скорость 1800 км/с, а расположенные в 10 раз дальше — 180000 км/с (половина значения скорости света).

Изображение

Для формулирования закона пришлось искать возможность определения расстояния до галактик независимым образом. Параллакс для ближних звезд можно измерить по методу, предложенному еще Фалесом, для далеких — искать некий индикатор расстояний. Американский астроном Г.Левитт обратила внимание на четкую зависимость периода цефеид от яркости (рис. 3.7). Цефеиды — наиболее яркие звезды в небольшой ближайшей к нам галактике — Малом Магеллановом Облаке. Название они получили от типичной цефеиды — дельта звезды созвездия Цефея. Датский астроном Э. Герцшпрунг сразу оценил идею Левитт и отка-либровал выведенную ею зависимость период-яркость в период-светимость и определил расстояние до этой галактики в 200 тыс. св. лет. Хаббл с помощью 100-дюймового телескопа обнаружил цефеиды в нескольких галакти-

Изображение

ках и смог оценить расстояние до них. Так Хаббл в 1929 г. вывел прямую линию на графике зависимости скоростей далеких галактик от расстояния до них (рис. 3.8).

Итак, скорости удаления v галактик возрастают пропорционально расстоянию до них: v= Н r, где Н — постоянная Хаббла. Сейчас считается, что H = 75 км/(с • Мпк).

Расширение Вселенной — самое грандиозное из известных в настоящее время явлений природы. Если допустить, что оно и раньше происходило теми же темпами, то можно оценить, когда же началось расширение. Этот промежуток времени составляет 13 — 20 млрд лет. Таким образом, смещение спектральных линий из-за эффекта Доплера привело к новой картине расширяющейся Вселенной.

291
Нет комментариев. Ваш будет первым!