Основные направления эволюции биосферы

План.1. Учение В.И. Вернадского о биосфере.

2. Биоразнообразие биосферы как результат ее эволюции.

3. О регулирующем воздействии биоты на окружающую среду.

4. Ноосфера как новая стадия эволюции человека.

1. УЧЕНИЕ В. И. ВЕРНАДСКОГО О БИОСФЕРЕ. По современным представлениям, биосфера – это особая оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.

Эти представления базируются на учении В.И. Вернадского (1863-1945) о биосфере, являющимся крупнейшим из обобщений в области естествознания в XX в. Исключительная значимость его учения во весь рост проявилась лишь во второй половине прошлого века. Этому способствовало развитие экологии, и прежде всего глобальной экологии, где биосфера является основополагающим понятием.

Учение В. И. Вернадского о биосфере – это целостное фундаментальное учение, органично связанное с важнейшими проблемами сохранения и развития жизни на Земле, знаменующее собой принципиально новый подход к изучению планеты как развивающейся саморегулирующейся системы в прошлом, настоящем и будущем.

По представлениям В. И. Вернадского, биосфера включает живое вещество (т.е. все живые организмы), биогенное (уголь, известняки, нефть и др.), косное (в его образовании живое не участвует, например магматические горные породы), биокосное (создается с помощью живых организмов), а также радиоактивное вещество, вещество космического происхождения (метеориты и др.) и рассеяние атомы. Все эти семь различных типов веществ геологически связаны между собой.

Сущность учения В.И. Вернадского заключена в признании исключительной роли «живого вещества», преобразующего облик планеты. Суммарный результат его деятельности за геологический период времени огромен. По словам В. И. Вернадского, «на земной поверхности нет химической силы более постоянно действующей, а потому более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом». Именно живые организмы улавливают и преобразуют лучистую энергию Солнца и создают бесконечное разнообразие нашего мира.

Вторым главнейшим аспектом учения В. И. Вернадского является разработанное им представление об организованности биосферы, которая проявляется в согласованном взаимодействии живого и неживого, взаимной приспособляемости организма и среды. «Организм, – писал В. И. Вернадский, – имеет дело со средой, к которой он не только приспособлен, но которая приспособлена и к нему» (В. И. Вернадский, 1934).

В. И. Вернадский обосновал также важнейшие представления о формах превращения вещества, путях биогенной миграции атомов, т.е. миграции химических элементов при участии живого вещества, накоплении химических элементов, о движущих факторах развития биосферы и др.

Важнейшей частью учения о биосфере В. И. Вернадского являются представления о ее возникновении и развитии. Современная биосфера возникла не сразу, а в результате длительной эволюции (табл. 1) в процессе постоянного взаимодействия абиотических и биотических факторов. Первые формы жизни, по-видимому, были представлены анаэробными бактериями. Однако созидательная и преобразующая роль живого вещества стала осуществляться лишь с появлением в биосфере фотосинтезирующих автотрофов – цианобактерий и синезеленых водорослей (прокариотов), а затем и настоящих водорослей и наземных растений (эукариотов), что имело решающее значение для формирования современной биосферы. Деятельность этих организмов привела к накоплению в биосфере свободного кислорода, что рассматривается как один из важнейших этапов эволюции.

Таблица 1. – Эволюция биосферы и ее основных составляющих

(по Ф. Рамаду, 1981)

Время, число летГеологическая эпохаБиосфераЛитосфераГидросфераАтмосфера
5 х 109Ранний архейФормирование Солнеч-
4,5 х 109ной системы
Наиболее древние породыКонденсация океанаСвободный

кислород отсутствует

3 х 109ДокембрийПервые бактерииПоявление

кислорода из оксидов железа

2 х 109Первые организмы, способные к фотоситезуВулканизмСодержание

кислорода

составляет 1% современного значения

Быстрый рост фитопланктонаДокембрийское оледенениеОбразование

озонового слоя

7 х 108Палеозойская эраПоявление многоклеточныхСодержание кислорода составляет 3-10% совре менного
5 х 108 – 2,25х 108Появление сосудистых растений и насекомыхОледенение Сахары.

Образование каменноугольных отложений

Увеличение объема океана
108

7 х 107

Мезозойская эраПоявление млекопитающихВулканизмСодержание кислорода увеличивается
Появление покрытосеменных растенийОтложение мела и гипса в осадочных породах

Продолжение таблицы 1.

5 х 107Кайнозойская эра
Эоцен
ОлигоценПоявление

злаковых

Образование бурого угля. Вулка низм
2 х 107МиоценУвеличение

видового

разнообразия млекопитающих.

Процентное

содержание

кислорода

близко к современному

107Первый при мат по линии антропоидов.
ПлиоценПервый из

известных

человекооб-

разных.

106Четвертичный периодОледенениеУровень моря на 120 м ниже современногоСодержание

кислорода

соответствует современ ному

Параллельно развивались и гетеротрофы, и прежде всего – животные. Главными датами их развития являются выход на сушу и заселение материков (к началу третичного периода) и, наконец, появление человека.

В сжатом виде идеи В.И. Вернадского об эволюции биосферы могут быть сформулированы следующим образом:

1. Вначале сформировалась литосфера – предвестник окружающей среды, а затем после появления жизни на суше – биосфера.

2. В течение всей геологической истории Земли никогда не наблюдались азойные геологические эпохи (т.е. лишенные жизни). Следовательно, современное живое вещество генетически связано с живым веществом прошлых геологических эпох.

3. Живые организмы – главный фактор миграции химических элементов в земной коре, «по крайней мере, 90% по весу массы ее вещества в своих существенных чертах обусловлено жизнью» (В. И. Вернадский, 1934).

4. Грандиозный геологический эффект деятельности организмов обусловлен тем, что их количество бесконечно велико и действуют они практически в течение бесконечно большого промежутка времени.

5. Основным движущим фактором развития процессов в биосфере является биохимическая энергия живого вещества.

Венцом творчества В. И. Вернадского стало учение о ноосфере, т.е. сфере разума.

В целом, учение о биосфере В. И. Вернадского заложило основы современных представлений о взаимосвязи и взаимодействии живой и неживой природы. Практическое значение учения о биосфере огромно. В наши дни оно служит естественнонаучной основой рационального природопользования и охраны окружающей среды.

2. БИОРАЗНООБРАЗИЕ БИОСФЕРЫ КАК РЕЗУЛЬТАТ ЕЕ ЭВОЛЮЦИИ. В относительно короткие промежутки развития экосистем (сукцессии), и в долговременной эволюции таких экосистем, как биосфера, на протекающие в них процессы оказывают влияние: 1) аллогенные (внешние) факторы – геологические и климатические; 2) автогенные (внутренние) процессы, обусловленные только живым компонентом. Благодаря действию и взаимодействию этих факторов сформировалось биологическое разнообразие на внутривидовом, межвидовом и на биосферном уровнях. Основа устойчивости биосферы (экосферы) – разнообразие составляющих ее экосистем.

Данные космохимии метеоритов и астероидов свидетельствуют о том, что образование органических соединений в Солнечной системе на ранних стадиях ее развития было типичным и массовым явлением (Войткевич, Вронский, 1996).

Простейшие анаэробы, из которых состояли первые на Земле экосистемы, образовались из этих органических веществ и, возможно, других, синтезируемых под действием мощного ультрафиолетового излучения. Тогда еще не было кислорода в атмосфере и, следовательно, озонового слоя, который сейчас является преградой для этого излучения.

Указанные выше простейшие анаэробы (дрожжеподобные) возникли более 3,5 млрд. лет назад, жизнь в это время в бескислородной атмосфере могла существовать только под защитой от ультрафиолетового излучения слоем воды. Питались эти простейшие биофильными веществами, которые содержались в избытке в горячих источниках мелких водоемов. Питательные же органические вещества для этих простейших создал космический синтез.

Таким образом, древнейшая биосфера возникла в гидросфере, существовала в ее пределах и носила гетеротрофный характер. Но закон «всюдности жизни» диктовал свои условия и размножающиеся организмы осуществляли экспансию в различные области обитания. Экспансия и «давление» отбора, обусловленные еще и скудностью пищи, в конечном итоге привели к возникновению фотосинтеза около 3,5 млрд лет назад (см. табл. 1).

Первыми автотрофами стали прокариоты – синезеленые водоросли и, возможно, цианобактерии. Затем 1,5-2 млрд. лет тому назад появились первые одноклеточные эукариоты и, в результате изначального господства г-отбора, произошел мощный популяционный взрыв автотрофных водорослей, что привело к избытку в воде кислорода и к его выделению в атмосферу. Произошел переход восстановительной атмосферы в кислородную, что способствовало развитию эукариотических организмов и появлению многоклеточных около 1,4 млрд. лет назад.

В начале кембрийского периода, примерно 600 млн. лет назад, содержание кислорода в атмосфере достигло 0,6%, а затем произошел еще один эволюционный взрыв – появились новые формы жизни – губки, кораллы, черви, моллюски. Уже к середине палеозоя содержание кислорода впервые стало близко к современному, и к этому времени жизнь не только заполнила все моря, но и вышла на сушу. Растительный покров, достаточное количество кислорода и питательных веществ в дальнейшем привели к возникновению таких крупных животных, как динозавры, млекопитающие и, наконец, человек. Но, несмотря на обилие автотрофов, в конце палеозоя, примерно 300 млн. лет назад, содержание кислорода в атмосфере упало до 5% от современного уровня и повысилось содержание углекислого газа. Это привело к изменению климата, снижению интенсивности процессов размножения и, как следствие, к бурному накоплению массы отмерших органических веществ, что создало запасы ископаемого топлива (каменный уголь, нефть). Затем содержание кислорода стало снова повышаться и с середины мелового периода, примерно 100 млн. лет назад, отношение О2/СО2, близко к современному, хотя и испытывало колебания в определенных пределах.

Такое состояние легко изменить. Например, человек, создав избыток СО2, может сделать это неустойчивое равновесие еще более нестабильным.

Из истории развития атмосферы ясно, что человек абсолютно зависим от других организмов, населяющих среду, в которой он обитает. Только от их жизнедеятельности и от их разнообразия зависит стабильность атмосферы и, следовательно, биосферы.

Ю. Одум (1975) считает, что «с экологической точки зрения эволюцию биосферы, по-видимому, можно сравнить с гетеротрофной сукцессией, за которой последовал автотрофный режим». Но до сих пор, несмотря на 4 млрд. лет эволюции, таксономический состав систем еще не стабилизировался. Биоразнообразие экосферы продолжает совершенствоваться за счет большого резерва в эволюции сообществ. На этом уровне ведущая роль принадлежит сопряженной эволюции и групповому отбору.

Сопряженная эволюция, или коэволюция, рассмотренная нами на внутри- и межвидовом уровнях, отличается тем, что при ней обмен генетической информацией минимален. На уровне сообществ можно рассматривать селективные воздействия между группами организмов, находящихся в экологическом взаимодействии: растения и растительноядные животные, крупные организмы и мелкие симбионты, паразит – хозяин, хищник – жертва и т.д. Особенно интересна сопряженность эволюции растений и насекомых фитофагов. Она приводит к тому, что растения синтезируют побочные вещества, совершенно ненужные для их роста и развития, но необходимые для защиты от насекомых-фитофагов.

Эта способность растений, видимо, развивает у них устойчивость к инсектицидам. В естественных условиях растения и фитофаги, которые тоже приспосабливаются к их защите, эволюционируют вместе. Здесь работает «генетическая обратная связь», которая ведет к высокому разнообразию растений (например, в тропиках), к гомеостазу популяций и сообществ внутри экосистемы.

Групповой отбор это естественный отбор в группах организмов, но не обязательно связанных тесными мутуалистическими связями. Это весьма сложное и во многом спорное явление. Но в первом приближении он представляет собой подобие отбора генотипов в популяции, но вымирают не отдельные генотипы, а целые популяции и, с другой стороны, получают развитие новые популяции, для которых эти условия более благоприятны.

Групповой отбор тоже увеличивает разнообразие и устойчивость сообществ.

Сопряженная эволюция и групповой отбор повышают биоразнообразие экосистем, устанавливают определенные взаимоотношения между ними как между наземными, так и водными, и даже между обоими типами. Все это в целом ведет к повышению устойчивости биосферы как глобальной экосистемы.

3. О РЕГУЛИРУЮЩЕМ ВОЗДЕЙСТВИИ БИОТЫ НА ОКРУЖАЮЩУЮ СРЕДУ. Эволюция биосферы убедительно свидетельствует, что при любом воздействии на биосферу – природном или антропогенном – ее гомеостаз обеспечивается за счет сохранения биологического разнообразия. Отсюда очевидно, что экологические условия есть продукт взаимодействия биоты и окружающей среды, и лишь правильная оценка этого взаимодействия позволяет разработать достоверные методологические подходы к сохранению или даже улучшению экологической обстановки в случае ее нарушения на всех экосистемных уровнях, вплоть до глобального.

Исследуя проблемы биологической регуляции окружающей среды, В. В. Горшков, В. Г. Горшков, В. И. Данилов-Данильян и др. (1999) пришли к выводу, что в настоящее время в экологической науке известны две основные концепции взаимодействия биоты и окружающей ее среды.

Согласно первой концепции – традиционной – окружающая среда пригодна для жизни в силу уникальных условий на поверхности Земли, а естественная биота приспосабливается к любой окружающей ее среде благодаря главному свойству жизни – способности к эволюции и непрерывной адаптации к меняющимся условиям среды. При этом любые виды организмов, способные адаптироваться к окружающей среде и производить наибольшее количество потомков, могут составлять земную биоту.

Согласно традиционной концепции – изменение окружающей среды под воздействием человека – это определенный этап естественного эволюционного процесса – превращения биосферы в новую глобальную биосистему, а природное биоразнообразие – генетический ресурс человека, который следует сохранять лишь в заповедниках, зоопарках и генных банках. При этом безостановочный экономический рост возможен лишь за счет непрерывного расширения использования ресурсов биосферы.

По мнению В.В. Горшкова и др. (1999), в традиционной концепции фактически игнорируются экологические ограничения на численность популяций биологических видов (в том числе человека), а также причины образования естественных сообществ, устойчивость сообществ и их среды обитания.

Во второй концепции основная роль отводится биотической регуляции окружающей среды. Биота Земли рассматривается как единственный механизм поддержания пригодных для жизни условий окружающей среды в локальных и глобальных масштабах. В случае прекращения регулирующего воздействия биоты физически неустойчивая окружающая среда быстро перейдет (примерно за 10 тыс. лет) в устойчивое состояние, в такое, как на Марсе или Венере, где жизнь невозможна.

В этой концепции главным свойством жизни считается способность видов к поддержанию тех условий окружающей среды, которые пригодны для существования биоты на любом экосистемном уровне, а не способность к непрерывной адаптации к изменяющимся условиям этой среды. Биотическая регуляция окружающей среды возможна в результате скореллированного взаимодействия между организмами и средой, которая подобна скореллированности клеток и органов внутри многоклеточного организма. Работу по обеспечению поддержания окружающей среды выполняют виды с оптимальной, а не с максимальной численностью. Именно они образуют сообщества и составляют земную биоту, обеспечивая стационарность численности особей, регулярность популяционных колебаний видов и предотвращают популяционные взрывы, разрушающие сообщества. Переход любого вида к производству максимального количества потомков, относится к генетическому отклонению от нормы и они немедленно вытесняются из популяции. Механизм отбора в этом случае – конкурентное взаимодействие однородных сообществ.

При переходе окружающей среды в новое состояние (например, изменение восстановительной атмосферы на окислительную), обязательно происходит существенная перестройка биоты. Но перестройка осуществляется без потери биотой способности предотвращать переход среды в состояние, непригодное для существования любой биоты. Это связано с тем, что существует несколько различных условий окружающей среды, пригодных для жизни, а эволюционирующая биота способна перебирать все приемлемые для жизни условия.

Жизнь на Земле существует около 4 млрд. лет, причем альтернативность вышеописанных концепций сохраняется на протяжении всего этого периода. Но за этот период изменился диапазон условий, пригодных для жизни, от локальных до глобальных масштабов. Это значит, что жизнь все это время активно изменяла окружающую среду в благоприятном для себя направлении, т.е. биотическая регуляция среды имела место с самого момента возникновения жизни.

Существование биотической регуляции окружающей среды доказывается рядом факторов, важнейшими из которых являются следующие:

1. Выбросы неорганического углерода из земных недр в атмосферу с огромной точностью соответствуют содержанию органического углерода в осадочных породах, что обеспечивает практически постоянное содержание неорганического углерода в атмосфере в течение сотен миллионов лет.

2. Концентрации биогенных элементов (С, N, Р, О2) в океане сформированы и поддерживаются биотой, о чем свидетельствует отношение С/N/Р/О2, совпадающее с таковым при синтезе органического вещества.

3. Круговорот воды на суше также определяется биотой, так как 2/3 осадков связано с испарением воды на суше, в котором доминирующая роль принадлежит биоте.

4. Незатронутая деятельностью человека биота океана поглощает избыток диоксида углерода, выбрасываемого в атмосферу человеком, т.е. действует в соответствии с отрицательными обратными связями, в то время как измененная человеком биота суши утратила эту способность.

5. Биотой океана поддерживается концентрация диоксида углерода в океане в три раза меньше, чем если бы ее воздействие отсутствовало, так как потеря неорганического углерода океаном в атмосферу компенсируется поступлением в океан органического углерода.

Биотическая регуляция исключает адаптацию, и наоборот. Адаптационные процессы связываются со способностью выживания организмов в определенных условиях, а если условия не меняются – нет и адаптации. При отсутствии адаптации биоты к искаженным условиям среды разрушение биотической регуляции обратимо. После прекращения антропогенного возмущения происходит восстановление аборигенных сообществ, содержащих правильную информацию о нормальных условиях среды и способах их регуляции путем сукцессионных процессов.

Таким образом, биотическая регуляция окружающей среды – это механизм управления окружающей средой, основанный на отобранных в процессе эволюции видах, содержащих необходимую для управления средой генетическую информацию. Возможность выживания человечества состоит в восстановлении естественной биоты на территориях, достаточных для сохранения ее способности к регуляции окружающей среды в глобальных масштабах. Главной экологической задачей человечества должно считаться сохранение естественной биоты на Земле, которое должно сопровождаться полным прекращением дальнейшего освоения естественной биоты океана и ее восстановлением на значительной освоенной части суши. Ряд ученых считают, например, что условием сохранения естественного биоразнообразия, обеспечивающего устойчивость биосферы, является расширение площади заповедников до 30% от всей территории, а общая природоохраняемая территория должна составлять (вместе с заповедниками) 85%. Человек, став мощным геологическим фактором, оказывает глобальное воздействие на биосферу. Биосфера, со своей стороны, через свои экологические законы, которые он вынужден соблюдать, чтобы выжить, в том числе и закон о биотической регуляции окружающей среды, воздействует на человека. Создаются условия, очень напоминающие сопряженную эволюцию или коэволюцию «человек-биосфера». Продуктом такой коэволюции может стать так называемая «ноосфера», т.е. сфера разума.

4. НООСФЕРА КАК НОВАЯ СТАДИЯ ЭВОЛЮЦИИ БИОСФЕРЫ. Ноосфера («мыслящая оболочка», сфера разума) – высшая стадия развития биосферы. Это «сфера взаимодействия природы и общества, в пределах которой разумная человеческая деятельность становится главным, определяющим фактором развития» (БСЭ, т. 18, с. 103).

Почему возникло понятие «ноосфера»? Оно появилось в связи с оценкой роли человека в эволюции биосферы. Непреходящая ценность учения В. И. Вернадского о ноосфере именно в том, что он выявил геологическую роль жизни, живого вещества в планетарных процессах, в создании и развитии биосферы и всего разнообразия живых существ в ней. Среди этих существ он выделил человека как мощную геологическую силу. Эта сила способна оказывать влияние на ход биогеохимических и других процессов в охваченной ее воздействием среде Земли и околоземном пространстве (пока «ближний» Космос). Вся эта среда весьма существенно изменяется человеком благодаря его труду. Он способен перестроить ее согласно своим представлениям и потребностям, изменить фактически ту биосферу, которая складывалась в течение всей геологической истории Земли.

В.И. Вернадский писал, что становление ноосферы «есть не случайное явление на нашей планете», «создание свободного разума», «человеческого гения», а «природное явление, резко материально проявляющееся в своих следствиях в окружающей человека среде» (1975). Иными словами, ноосфера – окружающая человека среда, в которой природные процессы обмена веществ и энергии контролируются обществом.

Человек, по мнению В.И. Вернадского, является частью биосферы, ее «определенной функцией». Подчеркивая тесную связь человека и природы, он допускал, что предпосылки возникновения человеческого разума имели место еще во времена животных, предшественников Ноmо sapiens, и проявление его началось миллионы лет назад, в конце третичного периода. Но как новая геологическая сила смог проявить себя только человек.

Воздействие человеческого общества как единого целого на природу по своему характеру резко отличается от воздействий других форм живого вещества. В.И. Вернадский писал: «Раньше организмы влияли на историю тех атомов, которые были нужны им для роста, размножения, питания, дыхания. Человек расширил этот круг, влияя на элементы, нужные для техники и создания цивилизованных форм жизни», что и изменило «вечный бег геохимических циклов» (1977).

Эти гениальные мысли В.И. Вернадского позволили ряду ученых допустить в дальнейшем и такой ход событий в эволюции биосферы, как коэволюцию между человеческим обществом и природной средой, в результате чего и возникнет ноосфера, но это будет происходить благодаря «новым формам действия живого вещества на обмен атомов живого вещества с косной материей». Он считал, что «геологически мы переживаем сейчас выделение в биосфере царства разума, меняющего коренным образом и ее облик, и ее строение, – ноосферы».

Анализируя представления В.И. Вернадского о ноосфере, Э.В. Гирусов (1986) высказал мнение, что ломка развития человеческой деятельности должна идти не вопреки, а в унисон с организованностью биосферы, ибо человечество, образуя ноосферу, всеми своими корнями связано с биосферой. Ноосфера – естественное и необходимое следствие человеческих усилий. Это преобразованная людьми биосфера соответственно познанным и практически освоенным законам ее строения и развития. Рассматривая такое развитие биосферы в ноосферу с позиций системного подхода, можно заключить, что ноосфера – это новое состояние некоторой глобальной суперсистемы как совокупности трех мощных подсистем: «человек», «производство» и «природа», как трех взаимосвязанных элементов при активной роли подсистемы «человек» (Прудников, 1990).

Становление ноосферы, по В.И. Вернадскому, – процесс длительный, но ряд ученых полагают, что человечество уже вступило в период ноосферы, хотя многие считают, что пока об этом говорить рано, так как то, что сейчас происходит во взаимодействии человека и природы, трудно увязать с наступлением эпохи разума. Тем не менее прогресс человеческого разума и научной мысли ноосферы налицо: они вышли уже за пределы биосферы Земли, в Космос и глубины литосферы (сверхглубокая Кольская скважина). По мнению многих ученых – ноосфера в будущем станет особой областью Солнечной системы. «Биосфера перейдет так или иначе, рано или поздно в ноосферу… На определенном этапе развития человек вынужден взять на себя ответственность за дальнейшую эволюцию планеты, иначе у него не будет будущего», – утверждал В. И. Вернадский.

514
Нет комментариев. Ваш будет первым!